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Permanent magnetic lattices for ultracold atoms

and quantum degenerate gases

Saeed Ghanbari, Tien D Kieu, Andrei Sidorov and Peter

Hannaford

Centre for Atom Optics and Ultrafast Spectroscopy and
ARC Centre of Excellence for Quantum Atom Optics
Swinburne University of Technology, Melbourne, Australia 3122

Abstract. We propose the use of periodic arrays of permanent magnetic films
for producing magnetic lattices of microtraps for confining, manipulating and
controlling small clouds of ultracold atoms and quantum degenerate gases. Using
analytical expressions and numerical calculations we show that periodic arrays
of magnetic films can produce one-dimensional (1D) and two-dimensional (2D)
magnetic lattices with non-zero potential minima, allowing ultracold atoms to be
trapped without losses due to spin flips. In particular, we show that two crossed
layers of periodic arrays of parallel rectangular magnets plus bias fields, or a single
layer of periodic arrays of square-shaped magnets with three different thicknesses
plus bias fields, can produce 2D magnetic lattices of microtraps having non-
zero potential minima and controllable trap depth. For arrays with micron-scale
periodicity, the magnetic microtraps can have very large trap depths (∼0.5 mK
for the realistic parameters chosen for the 2D lattice) and very tight confinement.

1. Introduction

Periodic optical lattices produced by the interference of intersecting laser beams have
been used extensively in recent years to confine, manipulate and control small clouds
of ultracold atoms and Bose-Einstein condensates [1]. Such lattices are ideal tools
for performing fundamental quantum physics experiments such as studies of low-
dimensional quantum gases [2] and quantum tunnelling experiments including the
BEC superfluid to Mott insulator quantum phase transition [3]. Optical lattices also
have potential application in quantum information processing since they may provide
storage registers for qubits based on neutral atoms [4, 5].

An alternative approach for producing periodic lattices for ultracold atoms is to
use the magnetic potentials of periodic arrays of magnetic microtraps. Simple, one-
dimensional (1D) magnetic lattices consisting of arrays of 2D traps or waveguides
have been proposed [6] and constructed using current-carrying wires [7] or permanent
magnetic structures [8, 9, 10] on ‘atom chips’, and two-dimensional (2D) lattices of
magnetic microtraps produced by crossed arrays of current-carrying wires have been
proposed [11, 12].

We have recently developed technology for producing high-quality magnetic
microstructures based on permanent, perpendicularly magnetised magneto-optical
Tb6Gd10Fe80Co4 films [13]. These magnetic microstructures have been used to
construct periodic grooved magnetic mirrors for ultracold atoms [13, 14], which in
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the presence of bias magnetic fields can be transformed into a 1D magnetic lattice
of 2D traps, and to produce atom chips for ultracold atoms and Bose-Einstein
condensates [15]. The Tb6Gd10Fe80Co4 magneto-optical films exhibit excellent
magnetic properties for atom optics applications: they can be deposited with high
perpendicular magnetic anisotropy; they have excellent magnetic homogeneity; and
they can have high permanent magnetisation (4πMz ∼ 3.8 kG), large coercivity
(Hc∼3 kOe) and relatively high Curie temperature (∼300◦C).

In this paper we propose the use of periodic arrays of permanent magnetic films for
producing magnetic lattices of microtraps for confining, manipulating and controlling
small clouds of ultracold atoms and quantum degenerate gases. Using analytical
expressions and numerical calculations we show that it is possible to produce 1D and
2D permanent magnetic lattices with non-zero potential minima in which ultracold
atoms prepared in low magnetic field-seeking states can be trapped without losses due
to Majorana spin flips. In particular, we show that two crossed separated layers of
periodic arrays of parallel rectangular magnets plus bias magnetic fields, or a single
layer of periodic arrays of square-shaped magnets having three different thicknesses
plus bias fields, can produce 2D magnetic lattices of microtraps with non-zero potential
minima and large and controllable trap depth and high trap frequency.

Magnetic lattices based on permanent magnetic films have potential advantages
over optical lattices or magnetic lattices based on current-carrying wires that make
them attractive for atom optics applications and compact integrated devices. They
do not involve (high intensity) laser beams or any beam alignment, and there is
no light scattering or decoherence due to spontaneous emission. They can produce
highly stable reproducible potential wells with low technical noise. They can be
produced with large trap depth and large magnetic field curvature, leading to
very high trap frequencies, without heat dissipation, in contrast to current-carrying
microwire devices. Using modern microtechnology, permanent magnetic lattices may
be fabricated with a wide range of periods from about 100 µm down to about 1 µm
and they can in principle involve variable spacing between the lattice sites or complex
potential shapes at each lattice site. Finally, in magnetic lattices, only atoms in
low magnetic field-seeking states are trapped and it should be possible to perform
radiofrequency evaporative cooling in situ in the lattice, thereby allowing the study
of very low temperature phenomena in lattices.

2. Analytical expressions for infinite magnetic lattices

2.1. Single infinite periodic array of magnets with bias fields

We consider first the simple case of a single infinite periodic array of parallel,
rectangular, long magnets of thickness t, with periodicity a along the y-direction,
perpendicular magnetisation Mz, and uniform bias magnetic fields B1x, B1y and B1z

along the x-, y- and z-directions [figure 1(a)-(c)].
The components of the magnetic field at distance z from the bottom surface of

the array of magnets [figure 1(b)] can be written as (using the results given in [16])

Bx = B1x (1a)

By = B0[(1 − e−kt)e−k[z−(s+t)] sin(ky)

− 1

3
(1 − e−3kt)e−3k[z−(s+t)] sin(3ky) + · · ·] + B1y (1b)
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Figure 1. (a-c) Single periodic array of parallel, rectangular magnets with
perpendicular magnetization. (d-f) Contour plots of the magnitude of the
magnetic field in the central region in the yoz plane without bias fields (d),
with a bias field B1y = −15 G along the y-direction (e), and with bias fields
B1x = −20 G, B1y = −15 G and B1z = −0.09 G along the x-, y- and z-directions.
For this calculation, the number of magnets nr = 1001, t = 0.05 µm, a = 1 µm,
lx = 1000.5 µm, and 4πMz = 3.8 kG. The spacing between the contour lines is
7 G.

Bz = B0[(1 − e−kt)e−k[z−(s+t)] cos(ky)

− 1

3
(1 − e−3kt)e−3k[z−(s+t)] cos(3ky) + · · ·] + B1z (1c)

where the decay constant k = 2π/a, B0 = 4Mz (Gaussian units), and the factors
(1 − e−kt), (1 − e−3kt), · · · account for the finite thickness t of the magnets.

For distances from the surface which are large compared with a/4π, the higher
order spatial harmonics in (1b) and (1c) will have decayed away, and (1a)-(1c) reduce
to

Bx = B1x (2a)

By = B0y sin(ky)e−kz + B1y (2b)

Bz = B0y cos(ky)e−kz + B1z (2c)

where B0y = B0(1 − e−kt)ekt. The magnitude of the magnetic field is then given by

B(y, z) =
{

B2
1x + B2

1y + B2
1z

+ 2[B0yB1y sin(ky) + B0yB1z cos(ky)]e−kz + B2
0ye−2kz

}
1

2

(3)

The effect of the bias fields B1y and B1z is essentially the same; so we set B1z = 0.
This results in a 1D periodic magnetic lattice of 2D magnetic traps with non-zero

potential minima, given by

Bmin = |B1x| (4)
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which are located at

ymin =

(

ny +
1

4

)

a (5a)

zmin =
a

2π
ln

(

B0y

|B1y|

)

(5b)

where ny = 0,±1,±2, · · · represents the trap number in the y-direction. The barrier
heights in the y- and z-directions are given by

∆By = By
max − Bmin = (B2

1x + 4B2
1y)

1

2 − |B1x| (6a)

∆Bz = Bz
max − Bmin = (B2

1x + B2
1y)

1

2 − |B1x| (6b)

The curvatures of the magnetic field at the centre of the 2D magnetic traps and the
trap frequencies in the y- and z-directions are given by

∂2B

∂y2
=

∂2B

∂z2
=

4π2

a2

B2
1y

|B1x|
(7)

ωy = ωz =
2π

a

(

m
F
g

F
µ

B

m|B1x|

)
1

2

|B1y| (8)

where m
F

is the magnetic quantum number of the hyperfine state F , g
F

is the Landé
g-factor, µ

B
is the Bohr magneton and m is the atomic mass. Equations (5b) and (8)

are the same as given in [9].

2.1.1. No bias fields For the case of no bias fields, (3) reduces to

B(z) = B0ye−kz (9)

Under these conditions the magnitude of the magnetic field falls off exponentially with
distance z from the surface. This configuration represents the familiar case of a grooved
magnetic mirror for slowly moving atoms in low magnetic field-seeking states [14].

2.1.2. Single bias field B1y For the case of a single bias field B1y, (3) becomes

B(y, z) =
{

B2
1y + 2B0yB1y sin(ky)e−kz + B2

0ye−2kz
}

1

2

(10)

The magnitude of the magnetic field develops corrugations with period a in the y-
direction, and 2D magnetic traps with Bmin = 0 appear in the potentials above the
surface. This configuration, involving a single bias field, may be used as a spatial
diffraction grating for slowly moving atoms [17, 18, 19, 20], but is not useful as a
magnetic lattice for ultracold atoms because of the zero potential minima.
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Figure 2. Periodic array consisting of two crossed layers of parallel, rectangular
permanent magnets with perpendicular magnetisation. In (d) the locations of the
central minima in the xoy plane are shown for a symmetrical magnetic lattice
with bias fields B1x = −4.08 G, B1y = −6.05 G and B1z = −0.69 G and other
parameters as given in table 1, column 3.

Table 1. Input parameters for (1) two crossed layers of periodic arrays of
rectangular magnets (figure 2), and (2) a single layer of square magnets with
three thicknesses (figure 7).

Parameter Definition Configuration (1) Configuration (2)

nr or nsq Number of rectangular nr = 1001 nsq = 401
magnets or square magnets
in x- or y-direction

a (µm) Period of magnetic lattice 1.000 1.000
lx = ly (µm) Length of magnets or 1000.5 200.5

magnetic array along x or y
s (µm) Separation of magnetic layers 0.100
t1 (µm) Thickness of magnetic 0.322 0.120

film (first)
t2 (µm) Thickness of magnetic 0.083 0.100

film (second)
t3 (µm) Thickness of magnetic 0.220

film (third)
4πMz (G) Magnetisation along z 3800 3800
B1x (G) Bias magnetic field along x −4.08 −5.00
B1y (G) Bias magnetic field along y −6.05 −4.22
B1z (G) Bias magnetic field along z −0.69 −1.87
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2.2. Two crossed layers of infinite periodic arrays of magnets with bias fields

We now consider a configuration consisting of two crossed, separated, infinite periodic
arrays of parallel, rectangular, long magnets with perpendicular magnetization Mz and
uniform bias fields B1x, B1y and B1z along the x-, y- and z-directions (figure 2). The
bottom array has periodicity a along the y-direction and the top array has periodicity
a along the x-direction. The two arrays are separated by a distance s and the magnets
in the bottom array have thickness t1 while those in the top array have thickness t2
[see figure 2(b)]. This configuration of crossed permanent magnets with bias fields
has similarities to the crossed current-carrying wire configurations proposed by Yin et

al [11] and by Grabowski and Pfau [12]. The components of the magnetic field for
distances from the top surface which are large compared with a/4π are given by

Bx = B0x sin(kx)e−kz + B1x (11a)

By = B0y sin(ky)e−kz + B1y (11b)

Bz = [B0x cos(kx) + B0y cos(ky)]e−kz + B1z (11c)

where

B0x = B0(1 − e−kt2)ek(s+t1+t2) (12a)

B0y = B0(1 − e−kt1)ekt1 (12b)

The magnitude of the magnetic field above the crossed magnetic arrays is then

B(x, y, z) =
{

B2
1x + B2

1y + B2
1z

+2[B0xB1x sin(kx) + B0yB1y sin(ky)

+B0xB1z cos(kx) + B0yB1z cos(ky)]e−kz

+ [B2
0x + B2

0y + 2B0xB0y cos(kx) cos(ky)]e−2kz
}

1

2

(13)

2.2.1. Two bias fields B1x and B1y For the case of two bias fields B1x and B1y, (13)
becomes

B(x, y, z) =
{

B2
1x + B2

1y

+2[B0xB1x sin(kx) + B0yB1y sin(ky)]e−kz

+ [B2
0x + B2

0y + 2B0xB0y cos(kx) cos(ky)]e−2kz
}

1

2

(14)

This configuration results in a 2D periodic lattice of magnetic traps with non-zero

potential minima given by

Bmin =
|B0xB1y − B0yB1x|

(B2
0x + B2

0y)
1

2

(15)



Permanent magnetic lattices for ultracold atoms and quantum degenerate gases 7

2.2.2. Symmetrical magnetic lattice with bias fields B1x and B1y To produce a
symmetrical magnetic lattice the amplitude of the oscillating magnetic field produced
by the bottom magnetic array in the y-direction needs to equal the amplitude of the
oscillating magnetic field produced by the top array in the x-direction. To satisfy this
condition we impose the constraint

B0xB1x = B0yB1y (16a)

or

B1y = c0B1x (16b)

where

c0 =
B0x

B0y

=

(

ekt2 − 1

1 − e−kt1

)

eks (17)

is a dimensionless constant which only involves geometrical constants a, s, t1 and t2 of
the magnetic array. The magnetic traps then have non-zero potential minima given
by

Bmin = c1|B1x| (18)

which are located at

xmin =

(

nx +
1

4

)

a, nx = 0,±1,±2, · · · (19a)

ymin =

(

ny +
1

4

)

a, ny = 0,±1,±2, · · · (19b)

zmin =
a

2π
ln

(

c2B0x

|B1x|

)

(19c)

where c1 and c2 are dimensionless constants which may be expressed in terms of the
constant c0 = B0x/B0y

c1 =
|1 − c2

0|
(1 + c2

0)
1

2

(20a)

c2 =
1

2

(

1 +
1

c2
0

)

(20b)

In order to have non-zero potential minima above the surface of the top array, we have
the following constraints

c2B0x > |B1x| > 0, c0c2B0y > |B1y| > 0, B0x 6= B0y (21)

The curvatures of the magnetic field at the centre of the traps and the trap
frequencies (for the case of a harmonic potential) in the three directions are given by

∂2B

∂x2
=

∂2B

∂y2
=

1

2

∂2B

∂z2
=

4π2c3

a2
|B1x| (22)

ωx = ωy =
ωz√

2
=

2π

a

(m
F
g

F
µ

B
c3

m

)
1

2 |B1x|
1

2 (23)

The potential barrier heights in the three directions are given by

∆Bx = ∆By = c4|B1x| (24a)
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∆Bz = c5|B1x| (24b)

c3, c4 and c5 are dimensionless constants which may be expressed in terms of c0

c3 =
2c2

0

(1 + c2
0)

1

2 |1 − c2
0|

(25a)

c4 =

(

1 + c2
0 +

4c2
0

1 + c2
0

)
1

2

− |1 − c2
0|

(1 + c2
0)

1

2

(25b)

c5 = (1 + c2
0)

1

2 (25c)

The barrier heights in the x-, y- and z-directions vary with zmin as

∆Bx = ∆Bx
0 e−k(zmin−zmin0) = ∆By = ∆By

0 e−k(zmin−zmin0) (26a)

∆Bz = ∆Bz
0e−k(zmin−zmin0) (26b)

where

∆Bx
0 = ∆By

0 = c1c4B0xe−kzmin0 (27a)

∆Bz
0 = c1c5B0xe−kzmin0 (27b)

If B1x and B1y are not subject to the constraint (16a) we have ∆Bx 6= ∆By. In some
experiments, e.g., in studies of quantum tunnelling between lattice sites, it may be
useful to be able to have different barrier heights along different axes.

2.2.3. Three bias fields B1x, B1y and B1z For the case of three bias fields B1x,
B1y and B1z , the magnitude of the magnetic field is given by (13). The analytical
expressions for Bmin, xmin, ymin and zmin in this case become very complex and we
resort to numerical evaluation of (13) to determine these quantities. Moreover, the
condition for a symmetrical magnetic lattice in the case Bz 6= 0 imposes the constraints

B0x = B0y, B1x = B1y (28)

and under such conditions, Bmin = 0. Thus in the case of an infinite symmetrical
magnetic lattice with three bias fields, B1x, B1y and B1z, it is not possible to have
non-zero potential minima.

Nevertheless, we find that in the case of a finite magnetic lattice it is useful to be
able to apply a bias field B1z in order to compensate for the asymmetry introduced
into the lattice by end-effects [21] associated with the finite number of magnets in the
array (see section 3).

3. Numerical calculations for finite magnetic lattices

To calculate magnetostatic potentials for arbitrary configurations, including finite
periodic arrays of magnets of finite length and arbitrary cross section, the software
package Radia [22] interfaced to Mathematica was used. Radia was also used to test
various proposed configurations of permanent magnets that might support periodic
arrays of microtraps with non-zero potential minima based on symmetry arguments.
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3.1. Single finite periodic array of magnets with bias fields

Figure 1(d) shows a numerical calculation of the magnetic field versus distance in the
y-direction for the central region of a single finite array of nr = 1001 rectangular
magnets, using the parameters a = 1 µm, t = 0.050 µm, lx = 1000.5 µm and 4πMz =
3.8 kG (corresponding to the magnetization of our perpendicularly magnetized
Tb6Gd10Fe80Co4 magneto-optical films [13, 15]) and with no bias magnetic fields.
Corrugations corresponding to the third-order spatial harmonic with period a/2 [16]
[see (1b) and (1c)] can be seen at distances very close (≪ a/4π) to the surface. At
large distances, there are small residual corrugations with period a, which are due
to ‘end effects’ [21] associated with the finite number (1001) of magnets in the array.
This configuration may be used as a magnetic mirror for slowly moving atoms [14].

Figure 1(e) shows the effect of adding a bias field B1y = −15 G. The magnitude
of the magnetic field develops large corrugations with period a in the y-direction, and
2D magnetic traps with Bmin = 0 appear in the potentials at zmin = 0.540 µm. This
configuration may be used as a spatial diffraction grating [17, 18, 19, 20] for slowly
moving atoms.

Figure 1(f) shows the effect of having bias fields B1x = −20 G, B1y = −15 G
and B1z = −0.09 G. The small value of B1z was chosen in order to compensate for
asymmetry introduced into the lattice by end-effects [21] associated with the finite
number of magnets (1001) in the array. Non-zero potential minima with Bmin =
|B1x| = 20 G appear in the potentials at zmin = 0.540 µm. This configuration may
be used as a 1D periodic lattice of 2D magnetic traps or waveguides for slowly moving
atoms. Relatively large values of B1x and B1y were used in this calculation so that the
magnetic traps are sufficiently deep to be seen in the contour plot. In practice smaller
values would normally be used. For example, if we use B1x = −2.73 G, B1y = −0.22 G
and B1z = −0.09 G, non-zero potential minima with Bmin = |B1x| = 2.73 G appear
in the potentials at zmin = 1.216 µm.

3.2. Two crossed layers of finite periodic arrays of magnets with bias fields

Figure 3 shows a numerical calculation of the magnetic field versus distance in the
x-, y- and z-directions of a finite array consisting of two crossed layers of periodic
arrays of parallel rectangular magnets. The parameters are nr = 1001, a = 1 µm,
s = 0.1 µm, t1 = 0.322 µm (bottom layer), t2 = 0.083 µm (top layer), 4πMz = 3.8 kG,
B1x = −4.08 G, B1y = −6.05 G and B1z = −0.69 G (see table 1). The values of
B1x, B1y, s, t1 and t2 satisfy the condition for a symmetrical infinite magnetic lattice
with two bias fields [equations (16a) or (16b)], while the value of B1z was adjusted to
compensate for asymmetry introduced into the lattice by ‘end-effects’ associated with
the finite number (1001) of magnets in the array (see section 2.2.3). The peaks at the
ends of the array [figure 3(a) and (b)] also arise from end-effects. The potential of the
microtraps is close to harmonic in the region near the bottom of the traps [figure 3
(g)-(i)].

Figure 4 shows a 3D plot and a contour plot of the magnetic field in the plane
z = zmin for the two crossed-layer structure of parallel magnets. The parameters used
in this calculation (table 1, column 3) lead to (nr−1)2 = 106 magnetic microtraps with
Bmin = 2.73 G at the central minimum, which is located at d = 0.712 µm from the top
surface, and magnetic field barrier heights ∆Bx = Bx

max−Bmin = ∆By = 7.23 G and
∆Bz = 4.57 G. The potential minima in the outer regions of the array have slightly
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Figure 3. Magnetic field produced by a periodic array consisting of two crossed
layers of parallel rectangular magnets. (a) Near the edge in the x direction, (b)
near the edge in the y-direction, and (c) in the z direction, for parameters given
in table 1, column 3. Curves (d)-(f) show the magnetic field in the central region
of the lattice with the abscissa expanded. Curves (g)-(i) show the magnetic field
in the central region of the lattice plotted (g) along a line (y = ymin, z = zmin)
parallel to the x-axis, (h) along a line (x = xmin, z = zmin) parallel to the y-axis,
and (i) along a line (x = xmin, y = ymin) parallel to the z-axis.

Figure 4. Magnetic field in the plane z = zmin for a periodic array consisting of
two crossed layers of parallel rectangular magnets. (a) 3D plot, and (b) contour
plot, for parameters given in table 1, column 3.
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Table 2. Parameters calculated numerically using Radia (columns 3 and 6) and
using the analytical formulae (columns 4 and 5) for the input parameters in table 1
for (1) two crossed layers of periodic arrays of rectangular magnets (figure 2), and
(2) a single layer of square magnets with three thicknesses (figure 7).

Config.(1) Config.(2)

Analytical

Parameter Definition Numerical B1z = 0 B1z = −0.69 (G) Numerical

xmin (µm) x co-ordinate 0.250 0.250 0.184 0.250
of potential
minimum

ymin (µm) y co-ordinate 0.250 0.250 0.294 0.250
of potential
minimum

zmin (µm) z co-ordinate 1.216 1.216 1.206 0.952
of potential
minimum

d (µm) Distance of 0.712 0.712 0.702 0.732
central minimum
from surface

Bmin (G) Magnetic field at 2.73 2.73 2.64 1.10
potential minimum

∂2B
∂x2

( G
cm2

) Curvature of B 3.32 × 1010 3.31 × 1010 3.77 × 1010 7.52 × 1010

along x
∂2B
∂y2

( G
cm2

) Curvature of B 3.32 × 1010 3.32 × 1010 3.77 × 1010 7.52 × 1010

along y
∂2B
∂z2

( G
cm2

) Curvature of B 6.64 × 1010 6.64 × 1010 6.98 × 1010 1.50 × 1011

along z
∆Bx (G) Magnetic barrier 7.22 7.22 8.01 8.10

height along x
∆By (G) Magnetic barrier 7.23 7.23 7.78 8.09

height along y
∆Bz (G) Magnetic barrier 4.57 4.57 4.69 5.45

height along z

Table 3. Parameters calculated numerically using Radia for input parameters in
table 1 for 87Rb F = 2, mF = +2 atoms trapped in a magnetic lattice consisting
of (1) two crossed layers of periodic arrays of rectangular magnets (figure 2), and
(2) a single layer of square magnets with three thicknesses (figure 7).

Parameter Definition Configuration (1) Configuration (2)

Umin/kB (µK) Energy of minimum of potential 183 74
∆Ux/kB (µK) Potential barrier height along x 485 544
∆Uy/kB (µK) Potential barrier height along y 486 544
∆Uz/kB (µK) Potential barrier height along z 307 383
ωx/2π (kHz) Trap frequency along x 232 350
ωy/2π (kHz) Trap frequency along y 233 350
ωz/2π (kHz) Trap frequency along z 329 494
h̄ωx/kB (µK) Level spacing along x 11 17
h̄ωy/kB (µK) Level spacing along y 11 17
h̄ωz/kB (µK) Level spacing along z 16 24
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Figure 5. Distance of the central minimum from the surface d = zmin − (t1 +
t2 + s) (in units of a) versus bias fields B1x, B1y or B1z , for the parameters given
in table 1, column 3.

Figure 6. Potential barriers (a) and trap frequencies (b) in the x-, y- and z-
directions, and Bmin (c) for the central minimum, as a function of d/a, for the
parameters given in table 1, column 3.

different values for the barrier heights due to end-effects. The various quantities
determined from this calculation are listed in table 2, column 3, along with values
determined using the analytical expressions for an infinite symmetrical magnetic
lattice with B1z = 0 (column 4) and B1z = −0.69 G (column 5). The values
determined from the numerical calculations for the finite lattice with B1z = −0.69 G
are in excellent agreement with those determined from the analytical expressions for
the infinite, symmetrical lattice with B1z = 0.

The height of the potential barrier in each direction i (i = x, y, z) for the trapped
ultracold atoms is related to the magnetic field barrier height by

∆U i = U i
max − Umin = m

F
g

F
µ

B
∆Bi (29)

The calculated parameters for 87Rb atoms in the low magnetic field-seeking F = 2,
m

F
= +2 state are listed in column 3 of table 3. The potential barrier heights

are ∆Ux = 485 µK, ∆Uy = 486 µK and ∆Uz = 307 µK, and the trap frequencies
are ωx = 2π × 232 kHz, ωy = 2π × 233 kHz and ωz = 2π × 329 kHz. The trap
frequencies may be scaled down, if necessary, by reducing c0 = B0x/B0y or B1x and
B1y [equation(23)].

Figure 5 shows how the distance of the central minimum from the surface,
d = zmin − (t1 + t2 + s), expressed in units of the period a, decreases with increasing
strength of the bias magnetic fields B1x and B1y. Figure 6(a), (b) and (c) show the
exponential increase in magnetic field minimum, potential barrier heights and trap
frequencies with decreasing distance d of the minimum from the surface.
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Figure 7. Periodic array consisting of one layer of square magnets with three
different thicknesses. In (c) the locations of the central minima in the x-y plane
are shown for a symmetrical magnetic lattice with parameters given in table 1,
column 4.

Figures 5 and 6 illustrate how the magnetic field minimum, potential barrier
heights and the trap frequencies of the microtraps in the magnetic lattice may be
controlled by varying the bias magnetic fields B1x and B1y to move the microtraps
closer to or further from the magnetic array. We note that B1x and B1y should be
varied simultaneously, according to (16a), while B1z is constant.

3.3. Single layer of periodic arrays of permanent magnets

A second configuration (figure 7), which leads to qualitatively similar 2D magnetic
lattices to the two crossed layers of parallel rectangular magnets, but which may be
easier to fabricate, consists of a single layer of square-shaped magnets having three
different thicknesses plus bias fields in the x-, y- and z-directions, where the thickness
of the thickest magnet t3 = t1 + t2. The parameters used in the numerical calculation
are listed in column 4 of table 1 and the quantities determined from this calculation
are summarized in the final columns of tables 2 and 3.

4. Discussion and summary

Using analytical expressions and numerical calculations we have shown that periodic
arrays of permanent magnetic films plus bias magnetic fields can lead to 2D or 1D
magnetic lattices of microtraps having non-zero potential minima and controllable trap
depth. Two configurations have been found that lead to 2D magnetic lattices with
non-zero potential minima: the first consists of two crossed layers of periodic arrays of
parallel rectangular magnets plus bias fields and the second consists of a single layer
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of square-shaped magnets having three different thicknesses plus bias fields. These
configurations lead to a symmetrical magnetic lattice with equal barrier heights in the
x- and y-directions in the plane of the array if the bias fields B1x and B1y maintain
a fixed relationship [given by (16a) or (16b) for the crossed array configuration] and
if the bias field B1z normal to the array is adjusted to compensate for asymmetry
introduced by the finite size of the array. In some experiments, e.g., in studies of
quantum tunnelling between lattice sites, it may be useful to be able to vary B1x

and B1y independently in order to vary the relative barrier heights in the x- and
y-directions.

For arrays with micron-scale periodicity, the magnetic microtraps can have very
large trap depths (∼ 0.5 mK for the parameters chosen for the 2D lattice), allowing
relatively warm atoms to be trapped, and very tight confinement. The barrier heights
of the microtraps can be controlled by varying the bias fields B1x and B1y in the
plane of the array, to move the traps either closer to or further from the surface.
The numerical calculations for the crossed array configuration were performed for a
1 mm×1 mm magnetic lattice with period a = 1 µm, giving 106 lattice sites. It should
be straight-forward to scale up the magnetic lattice, for example, to a 1 cm × 1 cm
lattice with period a = 1 µm, giving 108 lattice sites.

The permanent magnetic lattice configurations considered here should be suitable
for trapping and manipulating small clouds of ultracold atoms prepared in low
magnetic field-seeking states, including Bose-Einstein condensates and ultracold Fermi
gases. A cloud of ultracold atoms could be loaded into the permanent magnetic lattice
using, for example, a hybrid magnetic field structure comprising a current-carrying
‘U’ quadrupole trap and a ‘Z’ Ioffe-Pritchard trap located beneath the permanent
magnetic array on the atom chip [15]. Such a hybrid structure should allow ultracold
atoms to be initially loaded from a mirror MOT into the ‘U’ surface MOT, then into
the ‘Z’ magnetic trap, and finally into the 2D magnetic lattice.

By using a small period (a ∼ 1 µm) and controlling the barrier height between
the microtraps it may be possible to perform quantum tunnelling experiments such
as the BEC superfluid to Mott insulator transition [3] in a 2D magnetic lattice. Some
of the challenges will include the ability to fabricate permanent magnetic arrays
with sufficiently smooth magnetic potentials and equivalent magnetic microtraps
and to mimimise the effects of the interaction of the ultracold atoms with the
surface [23, 24, 25, 26, 27, 28, 29] in order to preserve quantum coherence of the
atoms in the magnetic lattice. For the magnetic lattices considered here, the potential
minima are located about 1 µm from the surface. At such distances the Casimir Polder
force [29] can be significant [27], leading to an attractive component that lowers the
barrier height, and losses due to thermally induced spin flips caused by interaction
with the ambient temperature surface [25, 26, 27, 28, 29] can be important. However,
spin-flip losses can be minimised by using magnetic films whose thickness (t ≤ 0.4 µm
for the magnetic lattices considered here) is much less than the skin depth and by
use of suitable dielectric substrates with low electrical conductivity [23]. It should
be possible to further reduce interactions with the surface, if necessary, by moving
the potential minima further from the surface by decreasing the bias magnetic fields
and/or marginally increasing the period of the magnetic lattice. Use of the BEC to
Mott insulator transition for ultracold atoms trapped in 2D magnetic lattices could
allow the preparation of a single qubit atom on each magnetic lattice site, which is
important for scalable quantum information processing.
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